
Bayesian Reconstruction of Particle Beam Phase Space from Low

Dimensional Data

Charles W. Nakhleh, Dave Higdon, Christopher K. Allen, and Vidya Kumar

Los Alamos National Laboratory

LA-UR-05-5897

1



1 Introduction

Understanding the physics of charged particle beams (e.g., proton beams) is essential to designing

and controlling efficient particle accelerators. The dynamics of a beam is naturally formulated

in a six-dimensional phase space (three position and three momentum or velocity dimensions).

However, experimental beam profile data taken from accelerators are typically one-dimensional

(coordinate) projections of the phase space distribution or image. The objective of this study

is to apply Bayesian image reconstruction techniques to reconstruct the phase space images at

different points along a beam from a series of one dimensional projection data sets (wirescans).

The resulting phase images along the beamline provide key beam diagnostic information and are of

great interest to accelerator designers. Because the cardinality of the phase images is much larger

than the cardinality of the projection data, successful reconstruction of the phase density depends

critically on the incorporation of non-trivial prior information.

The outline of this paper is as follows. First, we describe the specific example used in this

paper: proton beam data taken on the Low Energy Demonstration Accelerator (LEDA) at the

Los Alamos National Laboratory (Allen, Chan, Colestock, Crandall, Garnett, Gilpatrick, Lysenko,

Qiang, Schneider, Schulze, Sheffield, Smith and Wangler (2002)). We then describe the technique of

beam transfer matrices used in this paper to simulate the beam propagation. This section includes

a comparison of the transfer matrix method with a detailed accelerator simulation code. Then

we present the statistical formulation of the phase space reconstruction problem, including the

likelihood model; the image prior; and the Markov Chain Monte Carlo (MCMC) technique used

to estimate the posterior. Finally, we describe our results and outline additional sensitivity studies

we have undertaken.

2 LEDA experiments

LEDA was an 11m long, 6.7 MeV proton accelerator designed specifically to study continuous, high-

current proton beams. The LEDA lattice consisted of 52 focusing/defocusing (FODO) quadrupole

magnets; a number of steering magnets; and nine wire scanners (Fig. 1). A picture of the actual

machine is given in Fig. 2.

The data utilized in this paper come from the middle four (20, 22, 24, and 26) and the last

four wirescanners (45, 47, 49, and 51) in the beamline. At each wire scan station, the proton beam

distribution was projected onto both the vertical and horizontal directions. The wire scanner (Fig.

3) used a 33 µm carbon wire to measure the beam profile via secondary electron emission (because
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Figure 1: The Low Energy Demonstration Accelerator.

Figure 2: The LEDA experimental lattice.
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Figure 3: A LEDA wirescanner.

the wire itself was not thick enough to stop the protons themselves). A simulated beam with the

associated x direction phase images is shown in Fig. 4.

3 Beam transfer matrices

As the beam travels along its design trajectory, each charged particle in the beam is fully described

by its phase space coordinates {x(s), x′(s), y(s), y′(s), z(s), z′(x)}, where s is the coordinate along

the design trajectory, and x′(s) ≡ dx/ds = px/p = dx/dt
ds/dt , etc., is the relative momentum variable

commonly used in beam design (Allen and Pattengale (2002)). We will take x and y to be the

transverse directions for the linear LEDA array. The beam particles are subject to both applied

external forces from the steering magnets as well as self forces due to space charge effects. Using

the notation of Allen and Pattengale (2002), the quadrupole magnets are designed to yield a linear

force law:

Fext = −K(s) · r, (1)

where K(s) = (κx(s), κy(s), κz(s)) represents the action of the external magnets along the beamline.

Note that κx can be either positive or negative depending on whether the magnet is focusing or

defocusing, respectively, in the x plane, and similarly in the y and z planes.

If we ignore space charge effects, and keep in mind that 6.7 MeV protons are slowly moving

and therefore nonrelativistic, the equations of motion of the particle beam are easily written down

(Allen and Pattengale, 2002, Eqn. 16):

x′′ + k2
xx = 0, (2)

y′′ + k2
yy = 0, (3)

z′′ + k2
zz = 0, (4)

where k2
x = κx/mv

2, and kx(s) is a function of position along the beam. Despite appearances,

k2
x can be either positive (focusing magnet) or negative (defocusing magnet), and similarly for k2

y.
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Figure 4: Particle simulation down the LEDA beamline. The central diagrams show part of the

LEDA beamline consisting of three pairs of focusing and defocusing quadrupole magnets denoted

by the dark and light shaded regions respectively. Wirescan locations are given by the four dotted

vertical lines. At these four beamline locations, the resulting x- and y-phase space is shown for this

particular simulation.
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However, k2
x and k2

y do have a common magnitude that we take to be positive, i.e., |k2
x| = |k2

y| = k2.

For the LEDA case, kz = 0. The equation of motion for the x direction is, in matrix form:

x
′′(s) = A(s)x(s), (5)

where

x(s) =





x(s)

x′(s)



 , and A(s) =





0 1

−k2
x 0



 , (6)

with a similar equation for the y plane.

We can derive the lumped transfer matrix approximation used in this study as follows. Assuming

that kx, say, is approximately constant over a beam element of length l, we can integrate the x

equation to get the solution:

x(l) = Φ(l)x(0), (7)

where,

Φ(l) =





cos(kl) 1
k sin(kl)

−k sin(kl) cos(kl)



 ≡ F; Φ(l) =





cosh(kl) 1
k sinh(kl)

k sinh(kl) cosh(kl)



 ≡ D (8)

for the focusing and defocusing cases, respectively. D can be formally obtained from F by continuing

k to purely imaginary values k → ik. Similar solutions hold true for the y direction. For the z

direction, the equation of motion integrates trivially to give the final type of transfer matrix:

O(l) ≡





1 l

0 1



 (9)

Now to model the beam we simply treat each element as lumped and multiply the appropriate

transfer matrices together in both the x and y directions. By construction, this procedure provides

a linear map between the input phase space image and the phase space images at various points

along the beam.

How valid is this approximate description of the beam? Of course, it is not possible to actually

measure the phase space image at some beam point. Therefore, to address the issue of validating

the approximate transfer model, we turn to a detailed numerical simulation of LEDA using the

MaryLie/IMPACT accelerator code (Ryne, Qiang, Dragt, Habib, Mottershead, Neri, Samulyak and

Walstrom (2003)). We set up the LEDA configuration in ML/I, providing two known input phase

images to the code representing, respectively, simple and complex input distributions. The code
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Figure 5: Comparison of transfer matrix (lower row) with MLI particle simulation (upper row) for

a LEDA configuration.

then provides the phase space images at downstream points. As seen in Fig. 5 the downstream phase

space images computed by the transfer matrix method compare favorably with those computed by

ML/I for this application.

4 Statistical formulation

We start with an outline of our Bayesian reconstruction of the beam phase space images from the

projection data. Each of the steps will be discussed in detail below. First, we parametrize the

phase space image at the initial wirescan station using the method of process convolutions (Higdon

(2002)). Given a candidate image at the initial scanner location, we can use the method of transfer

matrices to propagate the phase space image down the beam to subsequent wirescan stations. At

any given scanner location, we project the image in a linear fashion to generate a candidate beam

profile to compare with the actual data. Therefore, given a parametrization of the first phase space

image, and given the appropriate transfer matrices for the beam, we have a fitted value for the

wirescan output that is used to construct the sampling model for the data.

To write down a posterior distribution on the parameters of the first phase space image, we

need a prior distribution on the parameters governing the initial phase space image. The priors we

use enforce a certain amount of smoothness on the image, in agreement with our physical intuition

about the experiment. Finally, we explore the posterior on the initial image parameters using
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Figure 6: Grid of kernels used to parametrize initial phase space image.

Markov Chain Monte Carlo techniques (Besag, Green, Higdon and Mengersen (1995)), which allow

us to not only estimate the mean posterior image but to assess the degree of variation the projection

data allow.

4.1 Image representation

We represent the initial phase image as a process convolution (Higdon (2002)), using tricube kernels

located on a grid of fixed centers, {xi}p
i=1, where p is the number of kernels chosen to represent the

image. Each xi is a point in the two dimensional image plane. The “standard” representation in

the analysis below uses an x× px grid of 29× 21 = 609 kernels to parametrize the image, as shown

in Fig. 6.

The expansion of the image z(x) is:

z(x) =

p
∑

i=1

K(1)(x − xi)ui, (10)

where u = (u1, u2, . . . , up)
T is a vector of process parameters. The kernel K(1) has the tricube form:

K(1)(x) ∝ (1 − |x|3/r3)3I[|x| ≤ r], (11)

where r is the range of the kernel, and I[·] is the indicator function. This representation also

provides good dimensionality reduction, an important computational benefit.

We remark that the number of initial image parameters u is almost always a good deal larger

than the number of total wire scan data points. For example, a typical number of total wire scan
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data points in the x direction, say, is 260. This is more than a factor of 2 less than a typical

number of image parameters. Obviously, inference conducted in such a data sparse environment

will strongly depend on the prior information brought to bear in the analysis.

4.2 Likelihood model

We now need to relate the initial phase image parameter vector to the projection data at all the

scanners. Using products of transfer matrices to propagate the particle state vector (i.e., position

and momentum) down the beamline is clearly a linear operation. In addition, projecting the image

onto the horizontal and vertical axes is also a linear operation. As discussed above, the phase space

image at the initial scanner is obtained from a vector of process parameters, u, by the action of

a matrix K(1). We denote the projection matrix that takes the resulting image down to a beam

profile by Px or Py, depending on the direction under consideration. Therefore, a candidate beam

profile for the x direction at the initial scanner is:

ŷ(1) = PxK(1)u. (12)

If we denote the transfer matrix that sends the initial phase space image into the image at the

second location by Φ2, the beam profile at the second location is:

ŷ(2) = PxΦ2K
(1)u, (13)

and similarly for the succeeding locations. If we put Φ1 = I we can gather all the scans into a

single data structure:

ŷ = [ŷ(1); ŷ(2); ŷ(3); ŷ(4)] = [PxΦ1K
(1)u; PxΦ2K

(1)u; PxΦ3K
(1)u; PxΦ4K

(1)u]. (14)

For brevity of expression, we write all these scans together as ŷ(u) = Ku, where K is the matrix

including the beam transfer matrices; the kernel representation; and the projection matrices.

To include experimental error, we model the data as:

y = Ku + η = ŷ(u),

with η ∼ N(0, 1
λe

I). We have denoted the experimental precision by λe = 1/σ2
e .

The observed data are obtained from wirescans that convert proton “hits” into electrical current

and are — to first order — scaled counts. Hence we use the standard square root transform to

stabilize the variance, resulting in the likelihood function:

l(y|u, λe) ∝ λn/2
e exp(−λe

2
(
√

y −
√

Ku)T (
√

y −
√

Ku)), (15)
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where the precision parameter λe scales the variance, which is assumed to be constant on this trans-

formed scale, and n is the total number of data points in all the scans. As seen below, we estimate

λe in the MCMC. The assumption of independence in the error structure is our starting point; it

is convenient, allows for straightforward estimation, and corresponds well to the experimentalists’

beliefs about the experiment. As will be seen, this assumption leads to efficient reconstructions

that account for most of the variation of the physical measurements. If, however, it emerges that

correlations among errors prove to be significant, they can be accommodated in our analysis.

We note here that the mixture prior on u described in the following section ensures that Ku ≥ 0.

This restriction follows from the fundamental positivity of the projection data and the linearity of

the data model. If we were to allow negative u’s we could generate negative wirescans and possibly

negative particle densities in the phase space image, which is physically impossible. However,

vanishing u’s are quite possible and indeed prominent in the phase image away from the image

core.

4.3 Image prior

We construct the prior in steps. To address the positivity constraint on the u’s, we use iid mixture

priors for each ui that put a finite mass on ui = 0 and distribute the rest of the mass over ui > 0

using a N(0, 1/λu) density. Denote the mixture proportion by α. Then the prior density π(u|λu)

is given by:

π(u|λu) =

p
∏

i=1

[

αδ(ui) + (1 − α)2

(

λu

2π

)1/2

exp

(

−λu

2
u2

i

)

I[ui > 0]

]

, (16)

where δ(x) is the Dirac delta function, I[·] is the indicator function, as above, and λu controls the

width of the half-normal mixture component.

We have found it sufficient to simply set λu to 1. Inspection of the prior for u reveals this choice

allows sizable values of u to if needed. This reflects our physical knowledge of the phase image as

being primarily composed of a prominent core surrounded by a halo. If λu is allowed to assume too

large a value, the u’s will be concentrated about 0 and will not attain the large values necessary

to reconstruct the core of the image. We also set the mixture parameter α to 1/2. This choice

amounts to adopting the prior assumption that a given point in the phase space image is as likely

to be inside the core as outside the core.

Finally, we take a uniform prior over R
+ for λe:

π(λe) ∝ 1. (17)
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As we will describe below, this mixture prior leads to some slight complications in the MCMC

algorithm.

4.4 Posterior estimation

Bayes’ theorem gives the posterior as the product of the prior and the likelihood. The results given

above give a joint posterior for u and λe:

π(u, λe|λu) ∝ π(u|λu) × λn/2
e exp(−λe

2
(
√

y −
√

Ku)T (
√

y −
√

Ku)), (18)

which allows us to recognize the full conditional density for λe as a gamma density:

λe|u, y ∼ Γ(n/2 + 1,
1

2
(
√

y −
√

Ku)T (
√

y −
√

Ku)). (19)

We explore the joint posterior distribution using a single site update Metropolis-Hastings algo-

rithm for the parameter vector u and a Gibbs step for the experimental precision λe (Besag et al.

(1995)). In our code, we take the logarithm of the posterior distribution for numerical convenience.

In the Metropolis-Hastings step, we tuned the proposal width to obtain an acceptance ratio of

approximately 1/2.

The update ui|u−i, λe is as follows. First, we draw u
′′

i from a uniform proposal distribution with

width r: u
′′

i ∼ U [ui − r, ui + r]. Then we set u
′

i = 0 if u
′′

i ≤ 0 and u
′

i = u
′′

i otherwise. We set the

updated value u∗

i = u
′

i with probability γ, where:

γ = min



1,
π

(

u
′

i|λu

)

q
(

u
′

i → ui

)

π (ui|λu) q
(

ui → u
′

i

)



 , (20)

and the proposal density q is given by:

q(x → y) =















r−x
2r if x > 0 and y = 0

1
2r if x = 0 and y > 0

1
2r if x > 0 and y > 0

1
2 if x = 0 and y = 0















. (21)

5 Results

The computed mean reconstructions in both the x and y directions for scans 20 − 26 are shown

in Fig. 7. Under the mean images are plots of the wirescan data (red dots), the 95% pointwise
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Figure 7: Reconstructions for scans 20–26. Red dots: wirescan data. Blue lines: 95% pointwise

confidence limits for mean scan. Red lines: 90% pointwise confidence limits for a predicted wirescan.

confidence limits for the mean wirescan (blue lines) and the 90% pointwise confidence limits for a

predicted experimental wirescan (red lines). Fig. 8 is a histogram of λe for the x direction showing

the posterior estimate of the experimental precision. Similarly, the computed mean reconstructions

for scans 40 − 45 are shown in Fig. 9.

We performed several checks on the robustness of our scheme. Numerical experimentation

indicated that about 1000 iterations, discarding 50 for burn-in, were sufficient to achieve robust

reconstructions. For comparison, Fig. 10 shows the reconstruction for a 5000 iteration run.

To check our sensitivity to the resolution of the kernel grid, we also computed a finely zoned

reconstruction (1539 kernels). The result for scans 20–26 is shown in Fig. 11.

Comparing Figs. 11 and 7 we see that the coarse-scale reconstruction effectively imposes a

higher degree of smoothness on the image. The fine-scale reconstruction tends to follow the data

too closely and, of course, is much more computationally intensive.
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Figure 9: Reconstructions for scans 45–51. Red dots: wirescan data. Blue lines: 95% pointwise

confidence limits for mean scan. Red lines: 90% pointwise confidence limits for a predicted wirescan.
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Figure 10: 5000 iteration reconstruction for scans 20–26. Red dots: wirescan data. Blue lines:

95% pointwise confidence limits for mean scan. Red lines: 90% pointwise confidence limits for a

predicted wirescan.
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Figure 11: Fine-scale reconstructions for scans 20–26. Red dots: wirescan data. Blue lines: 95%

pointwise confidence limits for mean scan. Red lines: 90% pointwise confidence limits for a predicted

wirescan.
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6 Discussion

Reconstruction of particle beam phase space images from projection data provides an excellent

application of modern computational Bayesian inference. The quality of the reconstructions is quite

good, and convincingly demonstrates the ability of our method to extract physically sensible phase

information from the projection data. The ability to capture complex phase information outside

the image cores is particularly noteworthy. This type of phase image detail has been previously

unavailable to accelerator physicists, and should enhance their ability to design efficient accelerators.

On the statistical side, the physical constraint that the image parameters be nonnegative leads to

a complex prior structure, accompanied by nontrivial complications in the MCMC update.

The major limiting approximation made in this paper is the use of the transfer matrix method

to model the beam dynamics. As we have shown, this approximation is satisfactory for the LEDA

accelerator. However, this approximation may not suffice for future accelerator designs. If not, then

the transfer matrices used here will need to be replaced by full numerical simulations like ML/I. In

this case, computational expense will become an important factor. MCMC techniques will place a

high premium on finding methods of efficiently modeling the simulator output. The development

of such methods for for accelerator codes like ML/I is a topic for future research.
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